Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equation x + 24 = (x - 3)√(-x^2 + 8x + 48), we need to isolate the radical term on one side of the equation and square both sides to eliminate the square root. First, let's move the x term to the right side of the equation: 24 = (x - 3)√(-x^2 + 8x + 48) - x Next, square both sides of the equation: 576 = [(x - 3)√(-x^2 + 8x + 48) - x]^2 Expanding the square on the right side: 576 = (x - 3)^2(-x^2 + 8x + 48) - 2x(x - 3)√(-x^2 + 8x + 48) + x^2 Simplifying: 576 = (x^2 - 6x + 9)(-x^2 + 8x + 48) - 2x(x - 3)√(-x^2 + 8x + 48) + x^2 576 = -x^4 + 8x^3 + 48x^2 - 6x^3 + 48x^2 - 288x + 9x^2 - 72x + 432 - 2x(x - 3)√(-x^2 + 8x + 48) + x^2 Combining like terms: 576 = -x^4 + 2x^3 + 56x^2 - 360x + 432 - 2x(x - 3)√(-x^2 + 8x + 48) Now, let's isolate the radical term: 2x(x - 3)√(-x^2 + 8x + 48) = -x^4 + 2x^3 + 56x^2 - 360x + 432 - 576 2x(x - 3)√(-x^2 + 8x + 48) = -x^4 + 2x^3 + 56x^2 - 360x - 144 Now, square both sides again to eliminate the square root: [2x(x - 3)√(-x^2 + 8x + 48)]^2 = (-x^4 + 2x^3 + 56x^2 - 360x - 144)^2 4x^2(x - 3)^2(-x^2 + 8x + 48) = (-x^4 + 2x^3 + 56x^2 - 360x - 144)^2 Expanding the square on the right side: 4x^2(x - 3)^2(-x^2 + 8x + 48) = x^8 - 4x^7 + 60x^6 - 400x^5 + 1152x^4 - 1728x^3 + 1296x^2 - 576x + 20736 Simplifying: 4x^2(x - 3)^2(-x^2 + 8x + 48) - x^8 + 4x^7 - 60x^6 + 400x^5 - 1152x^4 + 1728x^3 - 1296x^2 + 576x - 20736 = 0 This is a polynomial equation of degree 8. Unfortunately, it is not possible to solve this equation algebraically. You would need to use numerical methods or a graphing calculator to approximate the solutions.