A=3/(x+1).((2x-5)/(x-1)+(6-x)/(x-3)) Rút gọn biểu thức A.
0 trả lời
31 Tham khảo câu trả lời từ Trợ lý ảo Lazi Để rút gọn biểu thức A, ta thực hiện phép nhân và phép chia trên từng phần tử của biểu thức: A = 3/(x+1) * ((2x-5)/(x-1) + (6-x)/(x-3)) = 3/(x+1) * ((2x-5)/(x-1) + (6-x)/(x-3)) = 3/(x+1) * ((2x-5)(x-3) + (6-x)(x-1))/(x-1)(x-3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) = 3/(x+1) * (2x^2 - 6x - 5x + 15 + 6x - x - 6)/(x^2 - 4x + 3) =