Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O) và một dây AB. Vẽ đường kính (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy một điểm M. Các đường thẳng CM và DM cắt đường thẳng AB lần lượt tại E và F. Tiếp tuyến của đường tròn tại M cắt đường thẳng AB tại N. Chứng minh rằng N là trung điểm của EF.

Cho đường tròn (O) và một dây AB. Vẽ đường kính (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy một điểm M. Các đường thẳng CM và DM cắt đường thẳng AB lần lượt tại E và F. Tiếp tuyến của đường tròn tại M cắt đường thẳng AB tại N. Chứng minh rằng N là trung điểm của EF.

1 trả lời
Hỏi chi tiết
8
0
0

Ta sẽ chứng minh NE = NF bằng cách dùng NM làm trung gian.

Ta có  CD⊥AB nên DA⏜=DB⏜ và CA⏜=CB⏜  (định lí đường kính vuông góc với dây cung).

Góc F1 là góc có đỉnh ở bên trong một đường tròn nên:

F^1=sđ BM⏜+sđ AD⏜2=sđ BM⏜+sđ BD⏜2=sđ MBD⏜2   (1)

M3^ là góc tạo bởi tia tiếp tuyến và dây cung nên M2^=sđ MC⏜2   (2)

Từ (1) và (2) suy ra F1^=M3^ do đó ΔNMF cân tại N, suy ra NF = NM.

Góc E là góc có đỉnh ở bên ngoài đường tròn nên: E^=sđ AC⏜−sđ BM⏜2=sđ BC⏜−sđ BM⏜2=sđ MC⏜2  (3)

Góc M2 là góc tạo bởi tia tiếp tuyến và dây cung nên M2^=sđ MC⏜2 . (4)

Từ (3) và (4) suy ra E^=M2^ , dẫn tới E^=M1^  (vì M1^=M2^ )

Do đó ΔNME cân, suy ra NE = NM tại N. Do vậy NE = NF. Vậy N là trung điểm của EF

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k