LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Kim tự tháp Kheops ở Ai Cập có dạng hình chóp S.ABCD, có đáy là hình vuông với cạnh dài 230 m, các cạnh bên bằng nhau và dài 219 m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng (SAB) và (SBC).

Kim tự tháp Kheops ở Ai Cập có dạng hình chóp S.ABCD, có đáy là hình vuông với cạnh dài 230 m, các cạnh bên bằng nhau và dài 219 m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng (SAB) và (SBC).

1 trả lời
Hỏi chi tiết
11
0
0

Gọi O là giao điểm của AC và BD. Suy ra O là trung điểm của AC, BD.

Vì các tam giác SAC, SBD đều cân tại S, SO là trung tuyến nên SO đồng thời là đường cao.

Suy ra SO ^ AC, SO ^ BD nên SO ^ (ABCD).

Chọn hệ tọa độ như hình vẽ.

Vì ABCD là hình vuông cạnh 230 m nên OA = OB = OC = OD = \(115\sqrt 2 \).

Xét tam giác SOB vuông tại O, có \(SO = \sqrt {S{B^2} - O{B^2}} = \sqrt {{{219}^2} - {{\left( {115\sqrt 2 } \right)}^2}} = 7\sqrt {439} \).

Ta có \(A\left( { - 115\sqrt 2 ;0;0} \right),B\left( {0; - 115\sqrt 2 ;0} \right),C\left( {115\sqrt 2 ;0;0} \right),S\left( {0;0;7\sqrt {439} } \right)\).

Ta có \(\overrightarrow {SA} = \left( { - 115\sqrt 2 ;0; - 7\sqrt {439} } \right),\overrightarrow {SB} = \left( {0; - 115\sqrt 2 ; - 7\sqrt {439} } \right),\)

\(\overrightarrow {SC} = \left( {115\sqrt 2 ;0; - 7\sqrt {439} } \right)\).

Ta có \(\left[ {\overrightarrow {SA} ,\overrightarrow {SB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 7\sqrt {439} }\\{ - 115\sqrt 2 }&{ - 7\sqrt {439} }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 7\sqrt {439} }&{ - 115\sqrt 2 }\\{ - 7\sqrt {439} }&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 115\sqrt 2 }&0\\0&{ - 115\sqrt 2 }\end{array}} \right|} \right)\)

\( = \left( { - 805\sqrt {878} ; - 805\sqrt {878} ;26450} \right)\).

\(\left[ {\overrightarrow {SB} ,\overrightarrow {SC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 115\sqrt 2 }&{ - 7\sqrt {439} }\\0&{ - 7\sqrt {439} }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 7\sqrt {439} }&0\\{ - 7\sqrt {439} }&{115\sqrt 2 }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}0&{ - 115\sqrt 2 }\\{115\sqrt 2 }&0\end{array}} \right|} \right)\)

\( = \left( {805\sqrt {878} ; - 805\sqrt {878} ;26450} \right)\).

Mặt phẳng (SAB) nhận \(\overrightarrow n = \frac{1}{5}\left[ {\overrightarrow {SA} ,\overrightarrow {SB} } \right] = \left( { - 161\sqrt {878} ; - 161\sqrt {878} ;5290} \right)\) làm vectơ pháp tuyến.

Mặt phẳng (SBC) nhận \(\overrightarrow {n'} = \frac{1}{5}\left[ {\overrightarrow {SB} ,\overrightarrow {SC} } \right] = \left( {161\sqrt {878} ; - 161\sqrt {878} ;5290} \right)\) làm vectơ pháp tuyến.

Do đó

\(\begin{array}{l}\cos \left( {\left( {SAB} \right),\left( {SBC} \right)} \right)\\ = \frac{{\left| { - {{\left( {161\sqrt {878} } \right)}^2} + {{\left( {161\sqrt {878} } \right)}^2} + {{5290}^2}} \right|}}{{\sqrt {{{\left( { - 161\sqrt {878} } \right)}^2} + {{\left( { - 161\sqrt {878} } \right)}^2} + {{5290}^2}} .\sqrt {{{\left( {161\sqrt {878} } \right)}^2} + {{\left( { - 161\sqrt {878} } \right)}^2} + {{5290}^2}} }}\end{array}\)

\[ = \frac{{{{5290}^2}}}{{{{\left( {161\sqrt {878} } \right)}^2} + {{\left( { - 161\sqrt {878} } \right)}^2} + {{5290}^2}}}\]\[ \approx 0,3807\].

Suy ra ((SAB), (SBC)) ≈ 67,6°.

Vậy góc giữa hai mặt phẳng (SAB) và (SBC) khoảng 67,6°.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư