LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF. a) Chứng minh tứ giác BFCE là hình bình hành. b) Chứng minh tứ giác BFEA là hình chữ nhật. c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi. d) Vẽ AH ⊥ BC tại H. Gọi M là trung điểm của HC. Chứng minh FM ⊥ AM.

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.

a) Chứng minh tứ giác BFCE là hình bình hành.

b) Chứng minh tứ giác BFEA là hình chữ nhật.

c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.

d) Vẽ AH ⊥ BC tại H. Gọi M là trung điểm của HC. Chứng minh FM ⊥ AM.

1 trả lời
Hỏi chi tiết
13
0
0
Trần Đan Phương
11/09 14:14:57

a) Tứ giác BFCE có 2 đường chéo BC và FE cắt nhau tại trung điểm D của mỗi đường nên BFCE là hình bình hành.

b) BFCE là hình bình hành và E là trung điểm AC nên: BF=EC=AEBF∥EC∥AE

Suy ra BFEA là hình bình hành.

Mà tam giác ABC vuông ở A nên BFEA là hình chữ nhật

c) DE là đường trung bình trong tam giác ABC nên  DE//ABAB⊥AC Suy ra: DE ⊥ AC.

K đối xứng với F qua E hay E là trung điểm của FK

Tứ giác FAKC có 2 đường chéo FK và AC vuông góc và cắt nhau tại trung điểm E của mỗi đường nên AFCK là hình thoi.

d) Gọi I là giao điểm của hai đường chéo BE và AF trong hình chữ nhật BFEA

Suy ra I là trung điểm BE và AF và BE = FA

ME là đường trung bình của tam giác AHC nên ME // AH ⇒ ME ⊥ AH

Tam giác BME vuông tại M có trung tuyến MI nên MI = 12 BE = 12  FA

Tam giác FAM có trung tuyến MI thỏa mãn MI = 12  FA nên tam giác FAM vuông tại M

Hay FM ⊥ AM.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư