Cho xOy^. Vẽ cung tròn tâm O, cung này cắt Ox, Oy theo thứ tự tại M, N. Vẽ hai cung tròn tâm M và tâm N có cùng bán kính sao cho chúng cắt nhau tại điểm P nằm trong
xOy^. Nối O với P (Hình 16). Hãy chứng minh rằng DOMP = DONP, từ đó suy ra OP là tia phân giác của xOy^.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do M và N cùng thuộc cung tròn tâm O nên OM = ON.
Hai cung tròn tâm M và N có cùng bán kính cắt nhau tại P nên MP = NP.
Xét tam giác OMP và tam giác ONP:
OM = ON (chứng minh trên).
OP chung.
MP = NP (chứng minh trên).
Do đó DOMP = DONP (c.c.c).
Suy ra MOP^=NOP^ (2 góc tương ứng).
Mà OP nằm giữa OM và ON nên OP là tia phân giác của xOy^.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |