Tìm các giá trị của tham số m để đồ thị hàm số: y = x4 − 2mx2 + 2m + m4 có ba điểm cực trị là ba đỉnh của một tam giác đều.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: y′ = 4x3 − 4mx = 0 Û 4x(x2 − m) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right.\)
Để đồ thị hàm số có 3 điểm cực trị thì y′ = 0 có ba nghiệm phân biệt Û m > 0.
Khi đó đồ thị hàm số có các điểm cực trị là:
\(A\left( {0;\;2m + {m^4}} \right),\;B\left( {\sqrt m ;\;{m^4} - {m^2} + 2m} \right),\;C\left( { - \sqrt m ;\;{m^4} - {m^2} + 2m} \right)\)
Để tam giác ABC đều suy ra \(\left\{ \begin{array}{l}AB = AC\\AB = BC\end{array} \right.\).
Mà AB = AC (luôn đúng) nên suy ra AB = BC
Ta có: \(\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {\sqrt m ;\; - {m^2}} \right) \Rightarrow AB = \sqrt {m + {m^4}} \\\overrightarrow {BC} = \left( { - 2\sqrt m ;\;0} \right) \Rightarrow BC = \sqrt {4m} \end{array} \right.\)
AB = BC
\( \Leftrightarrow \sqrt {m + {m^4}} = \sqrt {4m} \)
Û m + m4 = 4m
Û m4 = 3m
\( \Leftrightarrow \left[ \begin{array}{l}m = 0\;\;\;\;\left( {KTM} \right)\\m = \sqrt[3]{3}\;\;\left( {TM} \right)\end{array} \right.\)
Vậy \(m = \sqrt[3]{3}\) là giá trị cần tìm.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |