Cho hình tứ diện SABC và các điểm A', B', C' lần lượt thuộc các cạnh SA, SB, SC. Giả sử hai đường thẳng B'C' và BC cắt nhau tại D, hai đường thẳng C'A' và CA cắt nhau tại E và hai đường thẳng A'B' và AB cắt nhau tại F. Chứng minh rằng ba điểm D, E, F thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có D là giao điểm của hai đường thẳng B'C' và BC nên D là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).
E là giao điểm của hai đường thẳng A'C' và AC nên E là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).
F là giao điểm của hai đường thẳng A'B' và AB nên F là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).
Do đó, ba điểm D, E, F cùng thuộc giao tuyến của hai mặt phẳng (ABC) và (A'B'C) nên ba điểm đó thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |