Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại C, đường cao CH, lấy điểm M trên AB và điểm N trên AC sao cho BM = BC và CN = CH. Chứng minh MN vuông góc với AC.

Cho tam giác ABC vuông tại C, đường cao CH, lấy điểm M trên AB và điểm N trên AC sao cho BM = BC và CN = CH. Chứng minh MN vuông góc với AC.

1 trả lời
Hỏi chi tiết
12
0
0

Xét tam giác MCB có: BM = BC (giả thiết)

Suy ra tam giác MCB cân tại B, nên BCM^=HMC^

Xét tam giác CHM vuông tại H có HMC^+HCM^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Hay HCM^=90°−HMC^

Ta có: MCN^+MCB^=ACB^=90°

Hay NCM^=90°−MCB^

Mà BCM^=HMC^, suy ra HCM^=MCN^

Xét tam giác MCH và tam giác MCN có:

CH = CN (giả thiết);

HCM^=MCN^ (chứng minh trên);

CM chung

Do đó ∆MCH = ∆MCN (c.g.c)

Suy ra CHM^=CNM^

Mà CHM^=90°, do đó CNM^=90°

Hay MN vuông góc với AC

Vậy MN vuông góc với AC.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k