Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC và H là trực tâm. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC và CA; D, E, F lần lượt là trung điểm các đoạn HA, HB và HC. a) Chứng minh rằng các tứ giác MNFD và MEFP là các hình chữ nhật.

Cho tam giác ABC và H là trực tâm. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC và CA; D, E, F lần lượt là trung điểm các đoạn HA, HB và HC.

a) Chứng minh rằng các tứ giác MNFD và MEFP là các hình chữ nhật.

1 trả lời
Hỏi chi tiết
29
0
0
Trần Đan Phương
13/09 22:53:53

a) Vì M, D là trung điểm của AB, AH nên MD là đường trung bình của tam giác ABH

⇒ MD // BH và MD = 12 BH (1)

Lại có: NF là đường trung bình của tam giác BHC nên NF // BH và NF = 12  BH (2)

Từ (1) và (2) suy ra: MD // NF và MD = NF

Suy ra: MNFD là hình bình hành. (*)

Lại có: MDH^+CDH^=BHC^+HAC^ = 90° (**)

Từ (*) và (**) suy ra: MNFD là hình chữ nhật.

Chứng minh tương tự:

EF // BC và MP // BC (là đường trung bình của tam giác BHC và tam giác ABC)

EF = MP =12 BC

⇒ MEFP là hình bình hành

ME // AH và EF // BC mà AH ⊥ BC nên ME ⊥ EF.

Suy ra: MEFP là hình chữ nhật.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k