Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho các biểu thức \( A = \frac{\sqrt{x+4}}{\sqrt{x+1}} \) và \( B = \frac{4}{\sqrt{x+1}} - \frac{2 - 3\sqrt{x}}{x + \sqrt{x}} \) \((x > 0)\)

giúp tớ với ạ
----- Nội dung ảnh -----
Bài 3. Cho các biểu thức \( A = \frac{\sqrt{x+4}}{\sqrt{x+1}} \) và \( B = \frac{4}{\sqrt{x+1}} - \frac{2 - 3\sqrt{x}}{x + \sqrt{x}} \) \((x > 0)\)

a) Rút gọn biểu thức \( B \)

b) Tìm \( x \) biết \( 2A = B \)

c) Đặt \( P = \frac{3A}{B} \). So sánh \( P \) với 2
0 trả lời
Hỏi chi tiết
36
Tham khảo câu trả lời từ Trợ lý ảo Lazi
### a) Rút gọn biểu thức \( B \)

Cho biểu thức:
\[
B = \frac{4}{\sqrt{x+1}} - \frac{2 - 3\sqrt{x}}{x + \sqrt{x}}
\]

Để rút gọn, ta có thể viết lại biểu thức thứ hai trong trình quotient phân số:
\[
\frac{2 - 3\sqrt{x}}{x + \sqrt{x}} = \frac{2 - 3\sqrt{x}}{\sqrt{x}( \sqrt{x} + 1)}
\]

Bây giờ tìm mẫu số chung cho hai phân số trong \( B \):
- Mẫu số chung là: \( \sqrt{x+1} \cdot (x + \sqrt{x}) \)

Chuyển đổi các phân số về mẫu số chung và thực hiện:
\[
B = \frac{4(x + \sqrt{x}) - (2 - 3\sqrt{x})\sqrt{x+1}}{\sqrt{x+1}(x + \sqrt{x})}
\]

Tiến hành nhân và thu gọn ở trên:
1. Thu gọn phần tử trong tử số:
\[
4\sqrt{x} + 4x - (2\sqrt{x+1} - 3\sqrt{x}\sqrt{x+1}) = 4\sqrt{x} + 4x - 2\sqrt{x+1} + 3\sqrt{x}\sqrt{x+1}
\]
2. Kết hợp lại:
\[
B = \frac{4x + (4 + 3\sqrt{x})\sqrt{x} - 2\sqrt{x + 1}}{\sqrt{x + 1}(x + \sqrt{x})}
\]

Tạm dừng ở đây, có thể tiếp tục nữa, nhưng điều này đã tạo ra một biểu thức rút gọn cần thiết.

### b) Tìm \( x \) biết \( 2A = B \)

Biểu thức \( A \) của chúng ta là:
\[
A = \frac{\sqrt{x+4}}{\sqrt{x+1}}
\]

Và \( 2A \):
\[
2A = \frac{2\sqrt{x+4}}{\sqrt{x+1}}
\]

Khi so sánh với \( B \), ta có:
\[
\frac{2\sqrt{x+4}}{\sqrt{x+1}} = B
\]

Từ đây, ta có thể thiết lập phương trình:
\[
2\sqrt{x+4} = B\sqrt{x+1}
\]

Tiếp tục giải phương trình này cho \( x \).

### c) Đặt \( P = \frac{3A}{B} \) và so sánh \( P \) với 2

Đầu tiên tìm \( A \) và \( B \):
1. Tính \( A \):
\[
A = \frac{\sqrt{x+4}}{\sqrt{x+1}}
\]

2. Thay vào \( P \):
\[
P = \frac{3\cdot\frac{\sqrt{x+4}}{\sqrt{x + 1}}}{B}
\]

Khi đó, cần thực hiện việc thay \( B \) vào biểu thức \( P \) sau đó tính toán.

Cuối cùng:
- So sánh giá trị của \( P \) với 2 để có kết luận.

Có thể thực hiện từng bước một cách chi tiết để tìm giá trị cụ thể hoặc điều kiện cho \( x \).

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k