Bài tập  /  Bài đang cần trả lời

Giải bài toán bằng cách lập phương trình hoặc hệ phương trình

Bài 2 (1,5 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trìnhMột tấm bìa hình chữ nhật có chiều dài hơn chiều rộng 3dm. Nếu giảm chiều rộng đi 1dm và tăng chiều dài thêm 1dm thì diện tích tấm bìa là 66 Tính chiều rộng và chiều dài của tấm bìa lúc ban đầu.Bài 3 (2,0 điểm)1) Cho phương trình x4 + mx2 - m - 1 = 0(m là tham số)a) Giải phương trình khi m = 2b) Tìm giá trị của m để phương trình có 4 nghiệm phân biệt.2) Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và đường thẳng (d): y = 2x + m (m là tham số).a) Xác định m để đường thẳng (d) tiếp xúc với parabol (P). Tìm hoành độ tiếp điểm.b) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm A, B nằm về hai phía của trục tung, sao cho diện tích có diện tích gấp hai lần diện tích (M là giao điểm của đường thẳng d với trục tung).Bài 4 (3,5 điểm) Cho đường tròn (O; R), dây AB. Trên cung lớn AB lấy điểm C sao cho A < CB. Các đường cao AE và BF của tam giác ABC cắt nhau tại I.a) Chứng minh tứ giác AFEB là tứ giác nội tiếpb) Chứng minh CF.CB = CE.CAc) Nếu dây AB có độ dài bằng R√3 , hãy tính số đo của (ACB)d) Đường tròn ngoại tiếp tam giác CEF cắt đường tròn (O; R) tại điểm thứ hai là K (K khác C). Vẽ đường kính CD của (O; R). Gọi P là trung điểm của AB. Chứng minh rằng ba điểm K, P, D thẳng hàng.Bài 2 (1, 5 điểm) Cho hai hàm số : y = x2 (P) và y = - x + 2 (d)a) Vẽ 2 đồ thì hàm số trên cùng 1 hệ trục tọa độb) Tìm tọa độ giao điểm của (P) và (d)c) Viết phương trình đường thẳng d' song song với d và cắt (P) tại điểm có hoành độ -1.Bài 3 (1, 5 điểm) Cho phương trình x2 + (m – 2)x – m + 1 =0a) Tìm m để phương trình có 1 nghiệm x = 2. Tìm nghiệm còn lạib) Chứng minh rằng phương trình luôn có nghiệm với mọi mc) Tìm giá trị nhỏ nhất của biểu thức A = x12 + x22 -6x1 x2Bài 4 (3,5 điểm) Cho (O;OA), dây BC vuông góc với OA tại K. Kẻ tiếp tuyến của (O) tại B và A, hai tiếp tuyến này cắt nhau tại Ha) Chứng minh tứ giác OBHA nội tiếp được đường trònb) Lấy trên O điểm M (M khác phía với A so với dây BC, dây BM lớn hơn dây MC). Tia MA và BH cắt nhau tại N. chứng minh ∠(NMC) = ∠(BAH)c) Tia MC và BA cắt nhau tại D. Chứng minh tứ giác MBND nội tiếp được đường tròn.d) Chứng minh OA ⊥ ND

10 trả lời
Hỏi chi tiết
576
1
0
Peo《Off》
08/04/2020 17:01:26

Bài 2 (1,5 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình

Một tấm bìa hình chữ nhật có chiều dài hơn chiều rộng 3dm. Nếu giảm chiều rộng đi 1dm và tăng chiều dài thêm 1dm thì diện tích tấm bìa là 66 Tính chiều rộng và chiều dài của tấm bìa lúc ban đầu.
 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Peo《Off》
08/04/2020 17:04:42
1
0
1
0
1
0
Peo《Off》
08/04/2020 17:08:12

a) Xét tứ giác AEFB có:

∠(AFB) = 90o ( AF là đường cao)

∠(AEB) = 90o ( BE là đường cao)

⇒ 2 đỉnh E và F cùng nhìn cạnh AB dưới 1 góc bằng nhau

⇒ AEFB là tứ giác nội tiếp.

b) Xét ΔBEC và ΔAFC có:

∠(BCA) là góc chung

∠(BEC) = ∠(AFC) = 90 o

⇒ ΔBEC ∼ ΔAFC

1
0
Peo《Off》
08/04/2020 17:08:43

⇒ Tứ giác CEIF là tứ giác nội tiếp và CI là đường kính đường tròn ngoại tiếp tứ giác CEIF

Ta có: IK ⊥ KC ( góc nội tiếp chắn nửa đường tròn ngoại tiếp tứ giác CEIF)

DK ⊥ KC (góc nội tiếp chắn nửa đường tròn (O)

⇒ D; I; K thẳng hàng (1)

Ta có:

DB ⊥ BC (góc nội tiếp chắn nửa đường tròn (O)

AI ⊥ BC ( AI là đường cao của tam giác ABC)

⇒ AI // BD

DA ⊥ BA(góc nội tiếp chắn nửa đường tròn (O)

BI ⊥ BA ( BI là đường cao của tam giác ABC)

⇒ AD // BI

Xét tứ giác ADBI có: AI // BD và AD // BI

⇒ ADBI là hình bình hành

Do P là trung điểm của AB ⇒ P là trung điểm của DI

Hay D; P; I thẳng hàng (2)

Từ (1) và (2) ⇒ D; P; K thẳng hàng.

1
0
Peo《Off》
08/04/2020 17:11:22

Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = -x + 2 ⇔ x2 + x - 2 = 0

⇒ Phương trình có nghiệm 1 và -2 ( phương trình dạng a + b + c = 0)

Với x = 1 ⇒ y = x2 = 1

Với x = - 2 ⇒ y = x2 = 4

Vậy tọa độ giao điểm của (P) và (d) là (1; 1) và (-2; 4)

c) Do d' // d nên phương trình của d' có dạng: y = -x + b (b ≠ 2)

Gọi A là giao điểm của d' và (P). A có hoành độ -1 ⇒ tung độ của A là 1

Do A (-1; 1) nên tọa độ của A thỏa mãn phương trình đường thẳng d'

⇒ 1 = -(-1) + b ⇒ b = 0

⇒ Phương trình đường thẳng d' là y = -x.

1
0
Peo《Off》
08/04/2020 17:11:52

Bài 3 x2 + (m – 2)x – m + 1 = 0

a) phương trình có 1 nghiệm x = 2 nên :

22 + (m-2).2 - m + 1 = 0

⇔ m = -1

Với m = -1, phương trình trở thành: x2 – 3x + 2 = 0

Theo hệ thức Vi-et ta có: x1 + x2 = 3

Giả sử x1 = 2 ⇒ x2 = 1

Vậy với m = - 1 thì phương trình có 1 nghiệm là 2 và nghiệm còn lại là 1.

b) Δ = (m - 2)2 -4.(-m + 1) = m2 - 4m + 4 + 4m - 4 = m2 ≥ 0 ∀ m

⇒ Phương trình đã cho luôn có nghiệm với mọi m
 

A = x12 + x22 -6x1 x2 = (x1 + x2 )2 - 8x1 x2

= (2 - m)2 - 8(-m + 1) = m2 - 4m + 4 + 8m - 8

= m2 + 4m - 4 = (m + 2)2 - 8

Ta có: (m + 2)2 ≥ 0 ∀ m

⇒ (m + 2)2 - 8 ≥ -8 ∀ m ⇔ A ≥ -8 ∀ m

Dấu bằng xảy ra khi (m + 2)2 = 0 ⇔ m= -2

Vậy GTNN của A là -8, đạt được khi m = -2

1
0
Peo《Off》
08/04/2020 17:13:15

a) Xét tứ giác OBHA có:

∠(OBH) = 90o ( BH là tiếp tuyến của (O)

∠(OAH) = 90o (AH là tiếp tuyến của (O)

⇒ ∠(OBH) + ∠(OAH) = 180o

⇒ Tứ giác OBHA là tứ giác nội tiếp

b) Ta có: Một phần đường kính OA vuông góc dây BC

⇒ AB = AC ⇒ sđ cung AB = sđ cung AC

⇒ ∠(BAH) = ∠(ABC) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung chắn 2 cung bằng nhau)

Tứ giác ABMC nội tiếp (O)

⇒ ∠(NMC) = ∠(ABC) (2 góc nội tiếp cùng chắn cung AC)

Do đó: ∠(NMC) = ∠(BAH)

c) 2 tiếp tuyến HA và HB cắt nhau tại H

⇒ ΔHAB cân tại H ⇒ ∠(BAH) = ∠(HBA)

Theo ý b) ∠(NMC) = ∠(BAH)

⇒ ∠(NMC) = ∠(HBA)

Xét tứ giác MBND có: ∠(NMC) = ∠(HBA)

⇒ 2 đỉnh M và B cùng nhìn cạnh ND dưới 1 góc bằng nhau

⇒ MBND là tứ giác nội tiếp.

d) Xét tứ giác MBND nội tiếp có:

∠(BDN) = ∠(BMN) (2 góc nội tiếp cùng chắn cung BN)

Xét tứ giác ABMC nội tiếp (O) có:

∠(ABC) = ∠(BMN) (2 góc nội tiếp cùng chắn cung bằng nhau )

⇒ ∠(BDN) = ∠(ABC)

Mà 2 góc này ở vị trí so le trong

⇒ ND // BC

Mà BC ⊥ OA ⇒ ND ⊥ OA

1
0

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k