Bài tập  /  Bài đang cần trả lời

Bài 2 trang 12 sgk hình học 12

1 trả lời
Hỏi chi tiết
303
0
0
Phạm Minh Trí
12/12/2017 02:38:56
Bài 2. Chứng minh rằng một đa diện mà mỗi đỉnh của nó đều là đỉnh chung của số lẻ mặt thì tổng số các đỉnh của nó là một số chẵn. Cho ví dụ.
Lời Giải :
Giả sử đa diện \((H)\) có các đỉnh là \(A_1, … A_d\) gọi \(m_1, … m_d\) lần lượt là số các mặt của \((H)\) nhận chúng là đỉnh chung. Như vậy mỗi đỉnh \(A_k\) có \(mk\) cạnh đi qua. Do mỗi cạnh của \((H)\) là cạnh chung của đúng hai mặt nên tổng số các cạnh của \(H\) bằng
 \(c = {1 \over 2}({m_1} + {m_2} + ... + {m_d})\)      
Vì \(c\) là số nguyên, \(m_1, … m_d\) là những số lẻ nên \(d\) phải là số chẵn. Ví dụ : Số đỉnh của hình chóp ngũ giác bằng sáu.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500K