Bài tập  /  Bài đang cần trả lời

Bài 26 trang 54 SBT Toán 9 Tập 2 - Bài 4: Công thức nghiệm của phương trình bậc hai

1 trả lời
Hỏi chi tiết
325
0
0
Trần Đan Phương
07/04/2018 12:14:03

Bài 4: Công thức nghiệm của phương trình bậc hai

Bài 26 trang 54 Sách bài tập Toán 9 Tập 2: Vì sao khi phương trình ax2 + bx + c = 0 có các hệ số a và c trái dấu thì nó có nghiệm?

Áp dụng: Không tính ∆, hãy giải thích vì sao mỗi phương trình sau có nghiệm:

a. 3x2– x – 8 = 0

b. 2004x2 + 2x - 1185√5 = 0

c. 3√2 x2 + (√3 - √2 )x + √2 - √3 = 0

d. 2010x2 + 5x – m2 = 0

Lời giải:

Khi a và c trái dấu thì ac < 0, suy ra –ac > 0, suy ra -4ac > 0

Ta có: ∆ = b2 – 4ac, trong đó b2 > 0

Nếu -4ac > 0 thì ∆ luôn lớn hơn 0.

Khi ∆ > 0 nghĩa là phương trình có hai nghiệm phân biệt.

Áp dụng :

a. Phương trình 3x2 – x – 8 = 0 có:

a = 3, c = -8 nên ac < 0

Vậy phương trình có 2 nghiệm phân biệt.

b. Phương trình 2004x2 + 2x - 1185√5 = 0 có:

a = 2004, c = -1185√5 nên ac < 0

Vậy phương trình có 2 nghiệm phân biệt.

c. Phương trình 3√2 x2 + (√3 - √2 )x + √2 - √3 = 0 có:

a = 3√2 , c = √2 - √3 nên ac < 0 (vì √2 < √3 )

Vậy phương trình có 2 nghiệm phân biệt.

d. 2010x2 + 5x – m2 = 0 (1)

*Với m = 0 thì (1) ⇔ 2010x2 + 5x = 0: phương trình có 2 nghiệm.

*Với m ≠ 0 ta có: m2 > 0, suy ra: -m2 < 0

Vì a = 2010 > 0, c = -m2 < 0 nên ac > 0

Vậy phương trình (1) có 2 nghiệm phân biệt.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k