Bài tập  /  Bài đang cần trả lời

Chứng minh CBHK là tứ giác nội tiếp. Chứng minh góc ACM = góc ACK

Cho đường tròn (O;R) có đường kính AB. Bán kính CO vuông góc AB, M là một điểm bất kì trên cung nhỏ AC( M khác A và C); BM cắt AC tại H. Gọi K là hình chiếu của H trên AB
a) CM: CBHK là tứ giác nội tiếp
b) CM: góc ACM= góc ACK
c) Trên đoạn thẳng BM lấy điểm E sao cho BE=AM Chứng minh tam giácECM là tam giácvuông cân tại C
1 trả lời
Hỏi chi tiết
2.896
4
1
Nguyễn Diệu Hoài
14/04/2018 17:29:32
a,
Xét tứ giác CBKH có:
^BKH + ^HCB = 90* + 90*
= 180*
-> tứ giác ABKH nội tiếp
b,
Tứ giác ABKH nội tiếp (cmt)
-> ^HCK = ^HBK ( 2 góc nội tiếp cùng chắn cung HK)
mà ^HBK = ^MCA ( 2 góc nội tiếp cùng chắn cung AM)
-> ^ACM = ^HCK
hay ^ACM = ^ACK

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k