Từ điểm \(A\) nằm bên ngoài đường tròn \(\left( {O\,;R} \right)\), kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn \((B,C\) là các tiếp điểm), \(AO\) cắt \(BC\) tại \(K\).
1) Chứng minh \(ABOC\) là tứ giác nội tiếp và \(AO\) là đường trung trực của đoạn thẳng \(BC.\)
2) Gọi \(P\) là điểm bất kì thuộc \(\left( O \right)\) sao cho tia \(BO\) nằm giữa hai tia \(BP\) và \(BC,H\) là chân đường vuông góc kẻ từ \(B\) xuống \(PC,M\) là trung điểm \(BH\) và \(PM\) cắt \(\left( O \right)\) tại \(Q\) (khác \(P).\) Chứng minh \(\widehat {QMK} = \widehat {QCA}\).
3) Chứng minh \(\widehat {AQC} = 90^\circ \) và \(AC = 2R\,{\rm{tan}}\widehat {CPQ}\).