Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt nhau tại đường tròn (O) lần lượt tại M, N, P.
Chứng minh rằng:
1: Tứ giác CEHD, nội tiếp.
2: Bốn điểm B, C, E, F cùng nằm trên một đường tròn
3: AE. AC = AH. AD ; AD. BC = BE. AC
4: H và M đối xứng nhau qua BC.
5: Xác định tâm đường tròn nội tiếp tam giác DEF.