Cho hình nón \((N)\) có đường cao \(SO = 9\) và bán kính đáy bằng \(R\), gọi \(M\) là điểm trên đoạn SO sao cho \(OM = x\,\,(0 < x < 9)\). Mặt phẳng \((P)\) vuông góc với trục SO tại \(M\) giao với hình nón \((N)\) theo thiết diện là đường tròn \((C)\). Giá trị của \(x\) bằng (1) _________ để khối nón có đỉnh là điểm \(O\) và đáy là hình tròn \((C)\) có thể tích lớn nhất?