Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và thỏa mãn điều kiện \(2f\left( x \right) - 3f\left( {1 - x} \right) = 4x - 1\), với mọi \(x \in \mathbb{R}\).
Kéo số thích hợp vào các chỗ trống sau:
1) Biết \(f\left( 0 \right) + f\left( 1 \right) = a\) (với \(a\) là số nguyên). Giá trị của \(a\) là _______.
2) Biết \(\int\limits_0^1 {f\left( x \right)dx = b} \) (với \(b\) là số nguyên). Giá trị của \(b\) là _______.
3) Biết \(\int\limits_0^1 {x.f'\left( x \right)dx} = \frac{c}{d}\) với \(c,d\) là các số nguyên và \(\left| {\frac{c}{d}} \right|\) là phân số tối giản.
Giá trị của biểu thức \(c + d\) là _______.