Chứng minh: I, A, K thẳng hàng và IK là tiếp tuyến của ( O)
Cho nửa đường tròn tâm O đường kính BC và điểm A trên nửa đường tròn O (A khác B,C). Hạ AH vuông góc với BC (H thuộc BC). I,K lần lượt là đối xứng với H qua AB, AC.Đường thẳng IK va tia CA cắt tiếp tuyến kẻ từ B của O lần lượt tại M,N. GỌi E là giao điểm của IH và AB, F là giao điểm KH với AC
a) Chứng minh: I, A, K thẳng hàng. IK là tiếp tuyến của ( O)
b) Chứng minh: 1/(BH^2) = 1/(AB^2) + 1/(AN)^2
c) Chứng minh: M là trung điểm của BN và MC, AH, EF đồng quy
d) Xác định vị trí điểm A trên nửa đường tròn để diện tích tứ giác BIKC lớn nhất
e) Chứng minh: BE.CF.BC = (AH)^3
f) Tiếp tuyến tại C của đường tròn ( O ) cắt IK tại P.Chứng minh: NO ⊥ PB
g) Chứng minh: AO ⊥EF
h) Q, R lần lượt là giao điểm của OM, OP với AB, AC. Xác định tâm và tính bán kính đường tròn ngoại tiếp tứ giác MP RQ biết ∠ACB = 30 độ.