Dương Võ | Chat Online
07/01/2022 09:17:08

Cho ΔABCcó 3 góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. K là điểm đối xứng với H qua M. Chứng minh: tứ giác BHCK là hình bình hành. Chứng minh: BK ⊥ AB và CK ⊥ AC


Bài 1: Cho ΔABCcó 3 góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh: BK⊥AB và CK⊥AC
c) Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
Bài 2: Cho tam giác ABC cân tại A, đường cao AD, O là trung điểm AC, điểm E đối xứng với điểm D qua điểm O.
a) Chứng minh tứ giác AECD là hình chữ nhật
b) Gọi I là trung điểm của AD, chứng tỏ I là trung điểm của BE
c) Cho AB = 10cm, BC = 12cm, tính diện tích tam giác OAD.
d) Đường thẳng OI cắt AB tại K. Tìm điều kiện của tam giác ABC để tứ giác AEDK là hình thang cân.
Bài 3: Cho ΔABCđều, D, E, F lần lượt là trung điểm của AB, AC, BC. Trên tia đối của tia ED lấy điểm M sao cho DE = EM, DF cắt CM tại N.
a) Chứng minh rằng BDEF là hình thoi?
b) Chứng minh rằng ADCM là hình chữ nhật
c) Chứng minh ΔFMN vuông
d) Gọi P là giao điểm BE và DF, Q là giao điểm của EC và FM. Chứng minh EF, DC, BM, PQ đồng quy.
Giải giúp mik với mn. Mình cần gấp:>
Bài tập chưa có câu trả lời nào. Rất mong nhận được trả lời của bạn! | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn