Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Hạ các đường cao AH, BK của tam giác. Các tia AH, BK lần lượt cắt (O) tại các điểm thứ hai là D và E.
a) Chứng minh tứ giác ABHK nội tiếp một đường tròn. Xác định tâm của đường tròn đó.
b) Chứng minh rằng: HK // DE.
c) Cho (O) và dây AB cố định, điểm C di chuyển trên (O) sao cho tam giác ABC có ba góc nhọn. Chứng minh rằng độ dài bán kính đường tròn ngoại tiếp tam giác CHK không đổi.