Cho (O;R) và một điểm P nằm ngoài đường tròn. Kẻ 2 tiếp tuyến PA, PB với đường tròn (A, B là tiếp điểm)
Bài 4. (3,5 điểm) Cho (O; R) và một điểm P nằm ngoài đường tròn. Kẻ 2 tiếp tuyến PA, PB với đường tròn (A, B là tiếp điểm). Tia PO cắt đường tròn tại 2 điểm K và I (K nằm giữa P và O) và cắt AB tại H. Gọi D là điểm đối xứng với B qua O, C là giao điểm của PD với đường tròn (O).
1) Chứng minh: tứ giác BHCP nội tiếp.
2) Chứng minh: PC. PD = PO . PH.
3) Đường tròn ngoại tiếp tam giác ACH cắt IC tại M. Tia AM cắt BI tại Q. Chứng minh tam giác AQH cân.
4) Giả sử BDC = 45°. Tính diện tích tam giác PBD phần nằm ngoài đường tròn (O) theo R.