Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P----- Nội dung dịch tự động từ ảnh ----- TUYỂN TẬP 80 BÀI TOÁN HÌNH HỌC LỚP 9 Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P. Chứng minh rằng: 1. Tứ giác CEHD, nội tiếp . 2. Bốn điểm B,CE,F cùng nằm trên một đường tròn. Bài 2. Cho tam giác càn ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE. 1. Chứng minh tứ giác CEHD nội tiếp . 2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn. Bài 3: Cho đường tròn tâm O, đường kính AB = 2R. Kẻ tia tiếp tuyến Bx, M là điểm thay đổi trên Bx AM cắt (O) tại N. Gọi I là trung điểm của AN. a. Chứng minh: Tử giác BOIM nội tiếp được trong 1 đường tròn. b. Chứng minh:AIBN - AOMB. Bài 4 Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC L MB, BD L MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB. 1. Chứng minh tứ giác AMBO nội tiếp. 2. Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn . Bài 5 Cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn ( M khác A,B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E; cắt tia BM tại F tia BE cắt Ax tại H, cắt AM tại K. 1) Chứng minh rằng: EFMK là tứ giác nội tiếp. 2) Chứng minh rằng: AI = IM . IB. Bài 6 Cho đường tròn (O) đường kính AB. Trên đoạn thẳng OB lấy điểm H bất kì ( H không trùng O, B) ; trên đường thẳng vuông góc với OB tại H, lấy một điểm M ở ngoài đường tròn ; MA và MB thứ tự cắt đường tròn (O) tại C và D. Gọi I là giao điểm của AD và BC. 1. Chứng minh MCID là tứ giác nội tiếp . Bài 7. Cho đường tròn (O) đường kính AC. Trên bán kính OC lấy điểm B tuỳ ý (B khác O, C ). Gọi M là trung điểm của đoạn AB. Qua M kẻ dây cung DE vuông góc với AB. Nối CD, Kẻ BI vuông góc với CD. 1. Chứng minh tứ giác BMDI nội tiếp . 2. Chứng minh tứ giác ADBE là hình thoi. 3. Chứng minh BI || AD. 8. Cho đường tròn (O; R) và (O’;R’) cóR>R’ tiếp xúc ngoài nhau tại C. Gọi AC và BC là hai đường điểm C của (O) và (O”). DE là dây cung của (O) vuông góc với AB tại trung điểm M của AB. Gọi giao điểm thứ hai của DC với (O’) là F, BD cắt (O’) tại G. Chứng minh rằng: di qua - Tứ giác MDGC nội tiếp . . Bốn điểm M, D, B, F cùng nằm trên một đường tròn ài 9. Cho hình vuông ABCD, điểm E thuộc cạnh BC. Qua B kẻ đường thẳng vuông góc với DE, đường thẳn ày cắt các đường thẳng DE và DC theo thứ tự ở H và K. 1. Chứng minh BHCD là tứ giác nội tiếp . 10 Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI= 2/3 AO. Kẻ dây vuông góc với AB tại I, gọi C là điểm tuỳ ý thuộc cung lớn MN sao cho C không trùng với M, N và B. ÁC cắt MN tại E. . Chứng minh tứ giác IECB nội tiếp . - Chứng minh tam giác AME đồng dạng với tam giác ACM. Gr Үй серт |