cho Δ ABC có 3 góc nhọn, AB < BC < AC nội tiếp đường tròn (O). Kẻ các đường cao BD,
<!--[if gte vml 1]> mso-wrap-style:square;mso-width-percent:0;mso-wrap-distance-left:9pt;
mso-wrap-distance-top:0;mso-wrap-distance-right:9pt;
mso-wrap-distance-bottom:0;mso-position-horizontal:absolute;
mso-position-horizontal-relative:text;mso-position-vertical:absolute;
mso-position-vertical-relative:text;mso-width-percent:0;mso-width-relative:margin'
from="2.55pt,17.05pt" to="465.3pt,20.2pt" o:gfxdata="UEsDBBQABgAIAAAAIQC75UiUBQEAAB4CAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKSRvU7DMBSF<br />dyTewfKKEqcMCKEmHfgZgaE8wMW+SSwc27JvS/v23KTJgkoXFsu+P+c7Ol5vDoMTe0zZBl/LVVlJ<br />gV4HY31Xy4/tS3EvRSbwBlzwWMsjZrlprq/W22PELHjb51r2RPFBqax7HCCXIaLnThvSAMTP1KkI<br />+gs6VLdVdad08ISeCho1ZLN+whZ2jsTzgcsnJwldluLxNDiyagkxOquB2Knae/OLUsyEkjenmdzb<br />mG/YhlRnCWPnb8C898bRJGtQvEOiVxjYhtLOxs8AySiT4JuDystlVV4WPeM6tK3VaILeDZxIOSsu<br />ti/jidNGNZ3/J08yC1dNv9v8AAAA//8DAFBLAwQUAAYACAAAACEArTA/8cEAAAAyAQAACwAAAF9y<br />ZWxzLy5yZWxzhI/NCsIwEITvgu8Q9m7TehCRpr2I4FX0AdZk2wbbJGTj39ubi6AgeJtl2G9m6vYx<br />jeJGka13CqqiBEFOe2Ndr+B03C3WIDihMzh6RwqexNA281l9oBFTfuLBBhaZ4ljBkFLYSMl6oAm5<br />8IFcdjofJ0z5jL0MqC/Yk1yW5UrGTwY0X0yxNwri3lQgjs+Qk/+zfddZTVuvrxO59CNCmoj3vCwj<br />MfaUFOjRhrPHaN4Wv0VV5OYgm1p+LW1eAAAA//8DAFBLAwQUAAYACAAAACEANxRhl9ABAACPBAAA<br />HwAAAGNsaXBib2FyZC9kcmF3aW5ncy9kcmF3aW5nMS54bWysVE1v2zAMvQ/YfxB0X+0kS5MYdXrI<br />1l6GrWi2H0DIsi1MpgxJc51/P8pWYiMYOuzjJprvPZJPlO/u+0azTlqnDOZ8cZNyJlGYQmGV829f<br />H95tOXMesABtUOb8JB2/3799cwdZZaGtlWCkgC6DnNfet1mSOFHLBtyNaSVSrjS2AU+hrZLCwgsp<br />NzpZpult0oBCvp+kPoAH9sOqv5DSRnyXxQGwA0eSWmTzL7FHLf5dGTLsHm17bJ9s6Fx87p4sU0XO<br />yTmEhiziSUxEGIXJFauaBPrSNgFvypL1Od+sF9v3JHWiy1gut+kuHeVk75mg/Hq7ud0t15wJQqx2<br />q03Mi/rL6wKi/viqBLU4tkKHWXuix2Mb+sPuEI7XU6/OUx+9BVXVnh0MohTeWLa6OBGpZydmSi4q<br />/hcbLjNA1lrnH6VpWDjkXCuUw6ZB98n5sY8zJEynkb2Q4+TueoA5o1XxoLQOyWGh5UFb1oHOue8X<br />YTAqNkNRpHH8GCdy/qTlqP0sS1oRur3FKB4eyKQHQkj0Z02NhA60kqpfiOnviREfqLIs6Qb+hHxh<br />DJUNTuRGobG/qj7ZUI74cfpxarIjbk5y9RQHVPx1hPc+j/c/AQAA//8DAFBLAwQUAAYACAAAACEA<br />kS1qSVgGAAAPGgAAGgAAAGNsaXBib2FyZC90aGVtZS90aGVtZTEueG1s7FlLbxs3EL4X6H9Y7L2x<br />3oqNyIGtR9zEToJISZEjpaV2GXOXC5Kyo1uRnHopUCAtemiA3nooigZogAa99McYcNCmP6JD7kOk<br />RMUPuEBQxAKM3dlvhsOZ2W9I7o2bT2PqHWEuCEs6fvVaxfdwMmEBScKO/3A0+Oy67wmJkgBRluCO<br />P8fCv7n96Sc30NaEknTMEA9GEY6xB4YSsYU6fiRlurWxISYgRuIaS3ECz6aMx0jCLQ83Ao6OYYCY<br />btQqldZGjEjib4NFqQz1KfxLpFCCCeVDZQZ7CYph9HvTKZlgjQ0Oqwoh5qJLuXeEaMcHmwE7HuGn<br />0vcoEhIedPyK/vM3tm9soK1cico1uobeQP/lerlCcFjTY/JwXA7aaDQbrZ3SvgZQuYrrt/utfqu0<br />pwFoMoGZZr6YNpu7m7u9Zo41QNmlw3av3atXLbxhv77i805T/Sy8BmX2Gyv4waALUbTwGpThmyv4<br />RqNd6zYsvAZl+NYKvl3Z6TXaFl6DIkqSwxV0pdmqd4vZlpApo3tO+GazMWjXcuMLFFRDWV1qiClL<br />5Lpai9ETxgcAUECKJEk8OU/xFE2gJruIkjEn3j4JIyi8FCVMgLhSqwwqdfivfg19pSOCtjAytJVf<br />4IlYESl/PDHhJJUd/zZY9Q3I6Zs3J89enzz7/eT585Nnv+Zja1OW3h5KQlPv3U/f/PPyS+/v3358<br />9+LbbOhlvDDxb3/56u0ff77PPMx4EYrT7169ff3q9Puv//r5hcP6DkdjEz4iMRbeXXzsPWAxTNDh<br />Px7zi2mMIkRMjZ0kFChBahSH/b6MLPTdOaLIgdvFdhwfcaAaF/DW7Inl8DDiM0kcFu9EsQU8YIzu<br />Mu6Mwh01lhHm0SwJ3YPzmYl7gNCRa+wuSqws92cpcCxxmexG2HLzPkWJRCFOsPTUM3aIsWN2jwmx<br />4npAJpwJNpXeY+LtIuIMyYiMrWpaKO2RGPIydzkI+bZic/DI22XUNesePrKR8G4g6nB+hKkVxlto<br />JlHsMjlCMTUDvo9k5HJyOOcTE9cXEjIdYsq8foCFcOnc4zBfI+l3gGbcaT+g89hGckkOXTb3EWMm<br />sscOuxGKUxd2SJLIxH4uDqFEkXefSRf8gNlviLqHPKBkbbofEWyl+2w2eAgMa7q0KBD1ZMYdubyF<br />mVW/wzmdIqypBhqAxesxSc4k+SV6b/539A4kevrDS8eMrobS3YatfFyQzHc4cb5Ne0sUvg63TNxd<br />xgPy4fN2D82S+xheldXm9ZG2P9K2/7+n7XXv89WT9YKfgbrVsjVbruvFe7x27T4llA7lnOJ9oZfv<br />ArpSMACh0tN7VFzu5dIILtWbDANYuJAjreNxJr8gMhpGKIU1ftVXRkKRmw6FlzIBS38tdtpWeDqL<br />D1iQbVmrVbU9zchDILmQV5qlHLYbMkO32ottWGleexvq7XLhgNK9iBPGYLYTdYcT7UKogqQ35xA0<br />hxN6ZlfixabDi+vKfJGqFS/AtTIrsGzyYLHV8ZsNUAEl2FUhigOVpyzVRXZ1Mq8y0+uCaVUArCGK<br />ClhkelP5unZ6anZZqZ0j05YTRrnZTujI6B4mIhTgvDqV9DxuXDTXm4uUWu6pUOjxoLQWbrSvv8+L<br />y+Ya9Ja5gSYmU9DEO+74rXoTSmaC0o4/ha0/XMYp1I5Qy11EQzg0m0ievfCXYZaUC9lDIsoCrkkn<br />Y4OYSMw9SuKOr6ZfpoEmmkO0b9UaEMIH69wm0MqH5hwk3U4ynk7xRJppNyQq0tktMHzGFc6nWv3y<br />YKXJZpDuYRQce2M64w8QlFizXVUBDIiAE6BqFs2AwJFmSWSL+ltqTDntmmeKuoYyOaJphPKOYpJ5<br />BtdUXrqj78oYGHf5nCGgRkjyRjgOVYM1g2p107JrZD6s7bpnK6nIGaS56JkWq6iu6WYxa4SiDSzF<br />8nJN3vCqCDFwmtnhM+peptzNguuW1glll4CAl/FzdN1zNATDtcVglmvK41UaVpydS+3eUUzwDNfO<br />0yQM1m8VZpfiVvYI53AgvFTnB73lqgXRtFhX6ki7Pk8coNQbh9WOD58I4GziKVzBRwYfZDUlqykZ<br />XMGXA2gX2XF/x88vCgk8zyQlpl5I6gWmUUgahaRZSJqFpFVIWr6nz8XhW4w6Eve94tgbelh+TJ6v<br />LexvONv/AgAA//8DAFBLAwQUAAYACAAAACEAnGZGQbsAAAAkAQAAKgAAAGNsaXBib2FyZC9kcmF3<br />aW5ncy9fcmVscy9kcmF3aW5nMS54bWwucmVsc4SPzQrCMBCE74LvEPZu0noQkSa9iNCr1AcIyTYt<br />Nj8kUezbG+hFQfCyMLPsN7NN+7IzeWJMk3ccaloBQae8npzhcOsvuyOQlKXTcvYOOSyYoBXbTXPF<br />WeZylMYpJFIoLnEYcw4nxpIa0cpEfUBXNoOPVuYio2FBqrs0yPZVdWDxkwHii0k6zSF2ugbSL6Ek<br />/2f7YZgUnr16WHT5RwTLpRcWoIwGMwdKV2edNS1dgYmGff0m3gAAAP//AwBQSwECLQAUAAYACAAA<br />ACEAu+VIlAUBAAAeAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBLAQIt<br />ABQABgAIAAAAIQCtMD/xwQAAADIBAAALAAAAAAAAAAAAAAAAADYBAABfcmVscy8ucmVsc1BLAQIt<br />ABQABgAIAAAAIQA3FGGX0AEAAI8EAAAfAAAAAAAAAAAAAAAAACACAABjbGlwYm9hcmQvZHJhd2lu<br />Z3MvZHJhd2luZzEueG1sUEsBAi0AFAAGAAgAAAAhAJEtaklYBgAADxoAABoAAAAAAAAAAAAAAAAA<br />LQQAAGNsaXBib2FyZC90aGVtZS90aGVtZTEueG1sUEsBAi0AFAAGAAgAAAAhAJxmRkG7AAAAJAEA<br />ACoAAAAAAAAAAAAAAAAAvQoAAGNsaXBib2FyZC9kcmF3aW5ncy9fcmVscy9kcmF3aW5nMS54bWwu<br />cmVsc1BLBQYAAAAABQAFAGcBAADACwAAAAA=<br />" strokecolor="black [3213]" strokeweight="1.25pt">
<!--[endif]--> CE cắt nhau tại H (D ∈ AC, E ∈ AB)
a. c/m: BCDE là tứ giác nội tiếp
b. c/m: DA.DC = DH.DB
c. Vẽ đường tròn tâm H, bán kính HA cắt các tia AB, AC lần lượt tại M, N. Chứng minh OA vuông góc với MN.
d. Các tiếp tuyến tại M , N của (H ; HA) cắt nhau tại P. Chứng minh AP đi qua trung điểm của BC.
hỏi ý c, d thôi ạ, ý a, b mình biết làm rồi ạ
----- Nội dung dịch tự động từ ảnh -----
Cho tam giác ABC có ba góc nhọn và AB < BC < AC nội tiếp
đường tròn (O). Kẻ các đường cao BD, CE cắt nhau tại H (D ∈
AC, E E AB).
1) Chứng minh BCDE là tứ giác nội tiếp.
2) Chứng minh DA.DC =DH.DB.
3) Vẽ đường tròn tâm H, bán kính HA cắt các tia AB, AC lần
lượt tại M, N. Chứng minh OA vuông góc với MN.
4) Các tiếp tuyến tại M, N của (H ; HA) cắt nhau tại P. Chứng
minh AP đi qua trung điểm của BC.