Chứng minh tứ giác MCOD nội tiếp; MO vuông góc CD. Chứng minh tam giác MCD là tam giác đều và tính độ dài cạnh của nó theo R
Cho đường tròn ( O;R ), M là một điểm ở ngoài đường tròn sao cho OM = 2R. Tia MO cắt đường tròn ở A và B ( A nằm giữa M và O ). Từ M kẻ 2 tiếp tuyến MC và MD với đường tròn (O), H là giao điểm của MO với CD. Chứng minh:
a. Tứ giác MCOD nội tiếp, MO vuông góc CD
b. Tam giác MCD là tam giác đều và tính độ dài cạnh của nó theo R
c. MA.MB=MH.MO