Chứng minh tứ giác OMHQ nội tiếp. Chứng minh góc OMH = góc OIP. Chứng minh khi M di chuyển trên đường thẳng d thì điểm I luôn cố định
Cho đường tròn tâm O bán kính R và đường thẳng d cố định không giao nhau. Hạ OH vuông góc với d. M là một điểm tùy ý trên d (M không trùng với H). Từ M kẻ hai tiếp tuyến MP và MQ với đường tròn (O; R) (P, Q là các tiếp điểm và tia MQ nằm giữa hai tia MH và MO). Dây cung PQ cắt OH và OM lần lượt tại I và K.
A) cm tứ giác OMHQ nội tiếp
B) cm góc OMH = góc OIP
C) cm khi M di chuyển trên đường thẳng d thì điểm I luôn cố định.
D) Biết OH = R√2, tính IP.IQ