Chứng minh tứ giác CDNE nội tiếp. Chứng minh 3 điểm C, K, N thẳng hàng. Chứng minh điểm I luôn nằm trên 1 đường thẳng cố định khi điểm M thay đổi
Cho nửa đường tròn (O), đường kính BC. Gọi D là điểm cố định thuộc đoạn thẳng OC (D khác O và C). Dựng đường thẳng d vuông góc với BC tại điểm D, cắt nửa đường tròn (O) tại điểm A. Trên cung AC lấy điểm M bất kỳ (M khác A và C), tia BM cắt đường thẳng d tại điểm K, tia CM cắt đường thẳng d tại điểm E. Đường thẳng BE cắt nửa đường tròn (O) tại điểm N (N khác B).
1. CM: Tứ giác CDNE nội tiếp
2. CM: 3 điểm C, K và N thẳng hàng
3. Gọi I là tâm đường tròn ngoại tiếp tam giác BKE. Chứng minh rằng điểm I luôn nằm trên 1 đường thằng cố định khi điểm M thay đổi