Cho đường tròn (O;R). Dây BC < 2R cố định và A thuộc cung lớn BC (A khác B, C và không trùng điểm chính giữa của cung). Gọi H là hình chiếu của A trên BC; E, F thứ tự là hình chiếu của B, C trên đường kính AA’
Cho đường tròn (O;R). Dây BC < 2R cố định và A thuộc cung lớn BC (A khác B, C và không trùng điểm chính giữa của cung). Gọi H là hình chiếu của A trên BC; E, F thứ tự là hình chiếu của B, C trên đường kính AA’.
a. Chứng minh: HE ⊥ AC.
b. Chứng minh: ∆HEF ~ ∆ABC.
c. Khi A di chuyển, chứng minh: Tâm đường tròn ngoại tiếp ∆HEF cố định.