Bài 6. Cho tam giác ABC nội tiếp đường tròn (O). BC cố định, Á chuyển động trên (O). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với BC,CA, AB lần lượt tại D,E,F. BI,CI giao EF tại M,N. a) Chứng minh rằng ADNM → AABC. b) Biết LA= 60°. Tỉnh Spun theo Sabc c) Chứng minh rằng (DMN) luôn đi qua một điểm cố định. Bài 7. Cho tam giác ABC có (La) là đường tròn bàng tiếp. (la) tiếp xúc với AC, AB lần lượt tại E,F. EF cắt IaB, I,C lần lượt tại P.Q. Chứng minh rằng ZBPC =