Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M. Gọi I là điểm đối xứng với H qua BC. Chứng minh tứ giác BIKC là hình thang cân
Câu 1. Cho tam giác ABC nhọn (AB<AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M. Gọi I là điểm đối xứng với H qua BC.
a) Chứng minh tứ giác BIKC là hình thang cân.
b) BK cắt HI tại G. Tìm điều kiện của tam giác ABC để tứ giác GHCK là hình thang cân.
Câu 2. Cho tam giác ABC cân tại A (AB<BC) có đường cao BK. Gọi I,E,F lần lượt là trung điểm của AB,BC,CA.
a) Chứng minh rằng IE là đường trung trực của đoạn BK.
b) Tứ giác IKEF là hình thang cân.