Cho đường tròn (O) đường kính BC lấy A thuộc (O) (A khác B, C). Trên cùng nửa mặt phẳng bờ là BC chứa A, tiếp tuyến Bx với (O) cắt CA tại D. Từ D kẻ tiếp tuyến DE với đường tròn (O) (E là tiếp tuyến khác B). Gọi I là giao điểm của OD và BE Cho đường tròn (O) đường kính BC lấy A thuộc (O) (A khác B,C).Trên cùng nửa mặt phẳng bờ là BC chứa A, tiếp tuyến Bx với (O) cắt CA tại D. Từ D kẻ tiếp tuyến DE với đường tròn (O) (E là tiếp tuyến khác B).Gọi I là giao điểm của OD và BE. a) Chứng minh OD vuông góc với BE và DI.DO = DA.DC b) Kẻ AH vuông góc với BC tại H, EH cắt CD tại G. Chứng minh IG song song với BC
Cho đường tròn (O) đường kính BC lấy A thuộc (O) (A khác B, C). Trên cùng nửa mặt phẳng bờ là BC chứa A, tiếp tuyến Bx với (O) cắt CA tại D. Từ D kẻ tiếp tuyến DE với đường tròn (O) (E là tiếp tuyến khác B). Gọi I là giao điểm của OD và BECho đường tròn (O) đường kính BC lấy A thuộc (O) (A khác B,C).Trên cùng nửa mặt phẳng bờ là BC chứa A, tiếp tuyến Bx với (O) cắt CA tại D. Từ D kẻ tiếp tuyến DE với đường tròn (O) (E là tiếp tuyến khác B).Gọi I là giao điểm của OD và BE.
a) Chứng minh OD vuông góc với BE và DI.DO = DA.DC
b) Kẻ AH vuông góc với BC tại H, EH cắt CD tại G. Chứng minh IG song song với BC