Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là tiếp điểm). MO cắt AB tại I. Kẻ đường kính BC của đường tròn, MC cắt đường tròn tại điểm thứ hai là K.
a) Chứng minh I là trung điểm AB.
b) Chứng minh MA^2=MK.MCMA2=MK.MC và ΔMKI đồng dạng với ΔMOC
c) Lấy điểm D trên cung lớn AB (DB < DA), kẻ BH⊥AD tại H. Gọi E là giao điểm của MO với (O). Qua D kẻ đường thẳng vuông góc với ED cắt tia BH tại P. Chứng minh: BP.OA=HP.OM