Câu 4 (3,0 điểm) Cho đường tròn tâm O đường kính BC, A là điểm di chuyển trên đường tròn (O) (A khác B và C). Kẻ AH vuông góc với BC tại H. M là điểm đối xứng của điểm A qua điểm B. a) Chứng minh điểm M luôn nằm trên một đường tròn cố định. b) Đường thẳng MH cắt (O) tại E và F (E nằm giữa M và F). Gọi I là trung điểm của HC, đường thẳng AI cắt (O) tại G (G khác A). Chứng minh: AF + FG+ GẺ HẢI 2BC². c) Gọi P là hình chiếu vuông góc của H lên AB. Tìm vị trí của điểm A sao cho bán kính đường tròn ngoại tiếp tam giác BCP đạt giá trị lớn nhất.