Chứng minh AM vuông góc với BCBài 1 : Cho tam giác ABC có AB=AC ,gọi M là trung điểm cua cạnh BC Chứng minh 2 tam giác ABM&ACM bằng nhau Chứng minh AM vuông góc với BC Bài 2 : Cho tam giác ABC Qua A kẻ đường thẳng song song với BC ,qua C kẻ đường thẳng song song với AB hai đường thẳng này cắt nhau tại D Chứng minh tam giác ABC bằng tam giác ADC CHứng minh hai tam giác ADB &CBD bằng nhau Gọi O là giao điểm của AC&BD .Chứng minh hai tam giác ABO&COD bằng nhau Bài 3 : Cho góc vuông xAy .trên tia Ax lấy 2 điểm B&D ,trên tia Ay lấy 2 điểm C&E sao cho AB=AC&AD=AE Chứng minh Tam giác ACD và tam giác ABE bằng nhau Chứng minh tam giác BOD&COE bằng nhau .Với O là giao điểm của DC&BE Chứng minh AO vuông góc với DE Bài 4 : Cho góc xOy khác góc bẹt ,trên tia Ox lấy 2 điểm A&D trên tia OY lấy 2 điêm C&E sao cho OD=OE và OA=OB chứng minh tam giác ODC và tam giác OBE bằng nhau Gọi A là giao điểm của BE&CD .Chứng minh tam giác AOB và tam giác AOC bằng nha Chứng minh BC vuông góc với OA Bài 5.Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC tại M. Chứng minh: ∆AMB = ∆AMC. Chứng minh M là trung điểm của cạnh BC. K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Chứng minh góc . Bài 6 Cho góc xOy khác góc bẹt. Lấy các điểm A, B thuộc tia Ox sao cho OA < OB. Lấy các điểm C, D thuộc tia Oy sao cho OC = OA, OB = OD. Gọi M là giao điểm của AD và BC. Chứng minh rằng: a) AD = BC. b) MAB = MCD. c) OM là tia phân giác của góc xOy. Bài 7 Cho tam giác ABC ( AB < AC) có AM là phân giác của góc A.(M thuộc BC).Trên AC lấy D sao cho AD = AB. a. Chứng minh: BM = MD b. Gọi K là giao điểm của AB và DM .Chứng minh: (DAK = (BAC Bài 8 Cho tam giác ABC vuông tại A. Kẻ . Kẻ HP vuông góc với AB và kéo dài để có PE = PH. Kẻ HQ vuông góc với AC và kéo dài để có QF = QH 1/Chứng minh 2/Chứng minh E, A, F thẳng hàng và A là trung điểm của EF Bài 9. Cho tam giác ABC vuông ở C, có góc A bằng 600, tia phân giác của góc BAC cắt BC ở E, kẻ EK vuông góc với AB (K thuộc AB), kẻ BD vuông góc với AE (D thuộc AE). Chứng minh: a) AK = KB b) AD = BC Bài 10. Cho tam giác ABC AB=AC và M là trung điểm của AC & N là trung điểm của AB .BM&CN cắt nhau tại K Chứng minh: a) b) có KB=KC Bài 11 (4 điểm) Cho đoạn thẳng BC. Gọi I là trung điểm của BC.Trên đường trung trực của BC lấy điểm A (A khác I) Chứng minh AIB = AIC. Kẻ IH vuông góc với AB, kẻ IK vuông góc với AC. Chứng minh AHK có 2 cạnh bằng nhau Chứng minh HK//BC. Bài 12. (1,5 điểm): Tính số đo của x trên hình vẽ Bài 13. Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng: a) BD là đường trung trực của AE b) DF = DC c) AD < DC c) AE // FC Bài 14 .Cho biết .Trong góc AOB tia phân giác OC .Trên tia Oc lấy điểm M ¸ va ON OA HM, OB MK Tính số đo các góc HMO & góc KMO Chứng minh hai tam giác MHO&MKO băng nhau |