----- Nội dung dịch tự động từ ảnh ----- Bài 5: (7,0 điểm) 1. Cho đường tròn tâm O và đường thẳng d cắt đường tròn tâm O tại hai điểm B, C (d không đi qua O). Trên tia đối của tia BC lấy điểm A (A nằm ngoài đường tròn tâm O). Kẻ AM và AN là các tiếp tuyến với đường tròn tâm O tại M và N. Gọi I là trung điểm của BC, AO cắt MN tại H và cắt đường tròn tại các điểm P và Q (P nằm giữa A và O), BC cắt MN tại K. a. Chứng minh 4 điểm O, M, N, I cùng nằm trên một đường tròn và AK. AI=AM b. Gọi D là trung điểm HQ, từ H kẻ đường thẳng vuông góc với MD cắt đường thẳng MP tại E. Chứng minh P là trung điểm ME. 2. Cho hình vuông có độ dài cạnh bằng 1m, trong hình vuông đó đặt 55 đường tròn, mỗi đường tròn có đường kính m. Chứng minh rằng tồn tại một đường thẳng giao với ít nhất bảy 1 9