Thái Võ | Chat Online
10/06/2017 12:46:47

Cho đường tròn (O;R) có đường kính AB cố định. Vẽ đường kính MN của đường tròn (O) (M khác A, M khác B). Tiếp tuyến của đường tròn (O) tại B cắt các đường thẳng AM, AN lần lượt tại các điểm Q, P. Chứng minh tứ giác AMBN là hình chữ nhật


Cho đường tròn (O;R) có đường kính AB cố định. Vẽ đường kính MN của đường tròn (O) (M khác A, M khác B). Tiếp tuyến của đường tròn (O) tại B cắt các đường thẳng AM, AN lần lượt tại các điểm Q, P.
1) Chứng minh tứ giác AMBN là hình chữ nhật.
2) Chứng minh bốn điểm M, N, P, Q cùng thuộc một đường tròn.
3) Gọi E là trung điểm của BQ. Đường thẳng vuông góc với OE tại O cắt PQ tại điểm F. Chứng minh F là trung điểm của BP và ME // NF.
4) Khi đường kính MN quay quanh tâm O và thỏa mãn điều kiện đề bài, xác định vị trí của đường kính MN để tứ giác MNPQ có diện tích nhỏ nhất.
Bài tập đã có 3 trả lời, xem 3 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn