Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm). Lấy điểm C trên cung nhỏ AB (C không trùng với A, B). Từ điểm C kẻ CD vuông góc với AB, CE vuông góc với MA, CF vuông góc với MB (D∈AB, E∈MA, F∈MB). Gọi I là giao điểm của AC và DE, K là giao điểm của BC và DF. Chứng minh rằng
a) Tứ giác ADCE nội tiếp đường tròn.
b) Hai tam giác CDE và CFD đồng dạng
c) Tia đối của tia CD là tia phân giác của góc ECF^
d) Đường thẳng IK song song với đường thẳng AB.