Cho ba điểm cố định A, B, C thẳng hàng (B nằm giữa A và C). Gọi (O) là một đường tròn thay đổi luôn đi qua B và C (tâm O không thuộc đường thẳng BC). Từ A kẻ các tiếp tuyến AD, AE đến đường tròn (O) (D, E là các tiếp điểm và D, O nằm cùng trên nửa mặt phẳng có bờ là đường thẳng BC). Gọi K, H lần lượt là trung điểm của BC và DE.
a) Chứng minh AE2=AB.AC
b) Trên DE lấy điểm M sao cho BM song song với AD. Chứng minh tứ giác BMKE nội tiếp đường tròn và MK song song với DC.
c) Chứng minh rằng khi đường tròn (O) thay đổi thì tâm đường tròn ngoại tiếp tam giác OHK thuộc một đường thẳng cố định.