Diệu Linh Hoàng | Chat Online
10/02/2019 20:51:20

Cho tam giác ABC nội tiếp (O), AB < AC, đường cao AH, trung tuyến AM. Gọi P, Q là hai điểm thuộc cung BC không chứa sao cho PQ//BC và tia AP nằm giữa hai tia AQ và AH


Cho tam giác ABC nội tiếp (O), AB < AC, đường cao AH, trung tuyến AM. Gọi P, Q là hai điểm thuộc cung BC không chứa sao cho PQ//BC và tia AP nằm giữa hai tia AQ và AH. Gọi K, X thứ tự là hình chiếu vuông góc của B lên AP, AQ; L, Y thứ tự là hình chiếu vuông góc của C lên AP, AQ.
1. Chứng minh rằng XKYL là tứ giác nội tiếp tâm M.
2. Chứng minh rằng HM là phân giác góc KHL; H, K, M, L cùng thuộc một đường tròn( đường tròn tâm I).
3. Gọi giao điểm khác K của AP và (I) là N. Chứng minh rằng NL luôn đi qua một điểm cố định khi P, Q di chuyển.
Bài tập chưa có câu trả lời nào. Rất mong nhận được trả lời của bạn! | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn