Cho khối chóp S.ABCD có đáy là hình bình hành. Gọi \[M,\,\,N\] là hai điểm nắm trên hai cạnh SC, SD sao cho \(\frac = \frac{1}{2},\,\,\frac = 2\), biết \(G\) là trọng tâm tam giác \[SAB.\] Tỉ số thể tích \(\frac{{{V_{G.MND}}}}{{{V_{S.ABCD}}}} = \frac{m}{n},\,\,m,\,\,n\) là các số nguyên dương và \(\left( {m,\,\,n} \right) = 1.\) Giá trị của \[m + n\] bằng