Trong tập các số phức, phương trình \({z^2} - 6z + m = 0,m \in \mathbb{R}.\) Gọi \({m_0}\) là một giá trị \(m\) để phương trình có hai nghiệm phân biệt \({z_1},\,\,{z_2}\) thỏa mãn \({z_1},\overline = {z_2} \cdot \overline .\) Hỏi trong khoảng \(\left( {0\,;\,\,20} \right)\) có bao nhiêu giá trị \({m_0} \in \mathbb{N}?\)