Cho tam giác ABC vuông tại A(AB < AC), gọi O là trung điểm của đoạn thẳng BC. Trên tia đối của tia OA lấy điểm K sao cho OA = OK. Vẽ AH vuông góc BC tại H, trên tia HC lấy HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E.
a) Chứng minh tam giác ABC bằng tam giác CKA.
b) Chứng minh AB = AE.
c) Gọi M là trung điểm của đoạn thẳng BE. Tính số đo góc CHM.
d) Chứng minh: \[\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\].