Cho hàm số y = f(x) = x2. Xét hình phẳng (được tô màu) gồm tất cả các điểm M(x; y) trên mặt phẳng tọa độ sao cho 1 ≤ x ≤ 2 và 0 ≤ y ≤ x2 (Hình 4). Hình phẳng đó được gọi là hình thang cong AMNB giới hạn bởi đồ thị của hàm số f(x) = x2, trục Ox và hai đường thẳng x = 1, x = 2.
Chia đoạn [1; 2] thành n phần bằng nhau bởi các điểm chia:
x0 = 1, ,
(Hình 5).
Tính diện tích T0 của hình chữ nhật dựng trên đoạn [x0; x1] với chiều cao là f(x0).
Tính diện tích T1 của hình chữ nhật dựng trên đoạn [x1; x2] với chiều cao là f(x1).
Tính diện tích T2 của hình chữ nhật dựng trên đoạn [x2; x3] với chiều cao là f(x2).
…
Tính diện tích Tn – 1 của hình chữ nhật dựng trên đoạn [xn – 1; xn] với chiều cao là f(xn–1).