Cho hàm số y = f(x) = x2. Xét hình phẳng (được tô màu) gồm tất cả các điểm M(x; y) trên mặt phẳng tọa độ sao cho 1 ≤ x ≤ 2 và 0 ≤ y ≤ x2 (Hình 4). Hình phẳng đó được gọi là hình thang cong AMNB giới hạn bởi đồ thị của hàm số f(x) = x2, trục Ox và hai đường thẳng x = 1, x = 2.
Chia đoạn [1; 2] thành n phần bằng nhau bởi các điểm chia:
x0 = 1, ,
(Hình 5).
Đặt Sn = T0 + T1 + T2 + … + Tn – 1. Chứng minh rằng:
Sn = ∙ [f(x0) + f(x1) + f(x2) + … + f(xn – 1)].
Tổng Sn gọi là tổng tích phân cấp n của hàm số f(x) = x2 trên đoạn [1; 2].