Cho đường thẳng d có vectơ chỉ phương \(\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right)\) và mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( {{n_1};{n_2};{n_3}} \right)\). Biết d cắt (P) tại điểm N và hình chiếu vuông góc của d lên (P) là đường thẳng d'. Qua N vẽ đường thẳng D vuông góc với (P) (Hình 12).
a) Nhắc lại định nghĩa góc giữa đường thẳng và mặt phẳng trong không gian.
b) Có nhận xét gì về số đo của hai góc α = (d, d'); β = (D, d)?
c) Giải thích tại sao ta lại có đẳng thức: \(\sin \left( {d,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow a ,\overrightarrow n } \right)} \right|\).