Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho HM = MK. a) Chứng minh: Tứ giác BHCK là hình bình hành. b) Chứng minh BK vuông góc AB và CK vuông góc AC. c) Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân. d) BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho HM = MK. a) Chứng minh: Tứ giác BHCK là hình bình hành. b) Chứng minh BK vuông góc AB và CK vuông góc AC. c) Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân. d) BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.