Trong không gian Oxyz, cho mặt cầu (S): (x – 2)2 + (y + 1)2 + (z – 3)2 = 9 và điểm A(2; −1; 1).
a) Tìm tâm I và bán kính R của mặt cầu (S).
b) Chứng minh rằng điểm A nằm trong mặt cầu (S).
c) Viết phương trình mặt phẳng (P) đi qua điểm A sao cho khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) là lớn nhất.