Cho đoạn thẳng AB = a, M là trung điểm của AB. Vẽ về 1 phía của AB các tia Ax, By vuông góc AB. Lấy C trên tia Ax và D trên tia By sao cho góc CMD = 90 độ. a) Tính tích AC.BD theo a. b) Chứng minh tam giác MAC và tam giác BMC đồng dạng
1. Cho đoạn thẳng AB=a, M là trung điểm AB. Vẽ về 1 phía của AB các tia Ax, By vuông góc AB. Lấy C trên tia Ax và D trên tia By sao cho góc CMD=90độ.
A, CM: Tính tích AC.BD theo a.
B. CM: Tam giác MAC và tam giác BMC đồng dạng.
C. Chứng minh: CM là tia phân giác của góc ACB
2. Cho tam giác ABC, có 3 góc đều nhọn. Các đường cao BD và CE cắt nhau tại H. Kẻ cuông góc BC,CK.(K thuộc BC).
A. CM: BH.BD=BK.BC.
B. CM: CH.CE=CK.CB.
C. CM: BH.BD+CH.CE+BC²