Cho đường tròn (O; R) và điểm A là một điểm cố định thuộc đường tròn. Kẻ đường thẳng d tiếp xúc với đường tròn tại A. Trên đường thẳng d lấy điểm M (M khác A), kẻ dây cung AB vuông góc với OM tại H.
a) Chứng minh BM tiếp tuyến của (O) và bốn điểm A; O; M; B cùng thuộc 1 đường tròn.b) Kẻ đường kính AD của (O), đoạn thẳng DM cắt đường tròn (O) tại điểm thứ 2 là E. Chứng minh MA2 = MH.MO = ME.MD , từ đó suy ra EHM^=ODM^.